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Outline
� Introduction

� MAESTRO—the underlying algorithm

� Bilevel framework

– Conceptual algorithm

– Computing the trial step

– Measuring progress / updating parameters

� Multilevel framework

� Convergence properties

� Computational considerations

� Preliminary numerical results / current demonstration

� Status of 1-st order AMF development
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1-st Order AMF
� Background:

– Variable-fidelity models (or approximations, or surrogates) used in
design with heuristic model selection for a long time.

– Provably convergent 1-st order AMF for unconstrained optimization
(Alexandrov et al. ’97)—alternate the use of variable-fidelity models
rigorously to attain an optimum of the high-fidelity problem.

– This work—provably convergent 1-st order AMF for constrained
problems.

– Testing done on “toy” problems. Computational experiments of
increasingly realistic problems in progress.

� Objectives of the talk:

– Outline an AMF for constrained optimization

– State conditions for reaching a solution of the high-fidelity problem

MDOB, NASA Langley Research Center
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Underlying framework: MAESTRO class for NLP
(Alexandrov ’93, Alexandrov and Dennis ’94)

� MAESTRO—a class of multilevel algorithms for large-scale nonlinear
programming problems, motivated by MDO problems with arbitrary
couplings;

� Approach—trust-region methodology (an adaptive move-limit strategy);

� Control optimization by varying the size of the trust region;

� Not necessary to change models to obtain convergence;

� When other models are available (e.g., varieties of structural or
aerodynamic models) MAESTRO-based AMF provides the user with
guidance on changing the nature of the models.

MDOB, NASA Langley Research Center



MAESTRO Class for Nonlinear Optimization
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Decomposition:

minimize f(x)
subject to h(x) = 0

minimize f(x)
subject to h1(x) = 0
                h2(x) = 0
                    . . .
                hM(x) = 0

(M is the number of fully
coupled blocks or disciplines;
x ∈ Rn - design variables)

Computing One Step: (M=2, n=3)

z0 = xc

min  model of
||h1(y)||2 in δ1

min restricted model of
||h2(y)||2  in δ2

min restricted model of
f(y) in δ3

z0

x+ = z3

minimize -L / D
subject to AERO
                 STRUCT
                     . . .
                         other disciplines

 

Example:
e.g.





Bilevel AMF

 

 

minimize   f(x)
subject to h(x) = 0

• AMF for a single block of constraints is the following procedure:

Given xc ∈ Rn, ∆c > 0

Converge?
yes

no

Select a model of the constraints

Compute substep s2 on the objective

Select a model of the objective

Compute substep s1 on the constraints

Set sc = s1 + s2

Evaluate sc, update xc and ∆c 

bye
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Bilevel AMF: model of constraints and substep
� Let xc be the current approximation to a solution and�c be the

trust-region radius. Setz0 = xc.

� At xc, select a model of the constraintsahc that satisfies:

ahc (xc) = h(xc)

rahc (xc) = rh(xc):

� Find a substeps1 that approximately solves:

minimize ahc (z0 + s)

subject to k s k � ��c; � 2 (0:5; 0:6):

� setz1 = z0 + s1.

MDOB, NASA Langley Research Center
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Bilevel AMF: model of objective and substep
� Select a modelafc of the objective function that satisfies:

afc (xc + s1) = f(xc + s1)

rafc (xc + s1) = rf(xc + s1):

� Find s2 that approximately solves:

minimize afc (z1 + s)

subject to k s k �
p

�2
c � ks1k
2:

� Setsc = s1 + s2.

� An extension of MAESTRO—the Gauss-Newton model of the constraints
and the quadratic model of the objective replaced by general models that
satisfy first-order consistency conditions.

MDOB, NASA Langley Research Center
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Bilevel AMF: evaluating the step
� Merit function:

P(x; �) � f(x)+� k h(x) k
2 or L(x; �; �) � f(x)+�Th(x)+� k h(x) k
2

� Penalty parameter� is not used in computing the step, but only in the
merit function.

� Penalty parameter is updated in a rigorous manner after the trial step is
computed and before it is evaluated.

� Define the actual reduction in the merit function as

aredc � P(xc; �c)�P(xc + sc; �c)

and the predicted reduction in the merit function as

predc � [f(xc)� afc (xc + sc)] + �c[k h(xc) k
2 �
 ahc (xc + sc)
2]

MDOB, NASA Langley Research Center
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Bilevel AMF: evaluating the step / updating
� Updating the iterate:

x+ =
8<

:
xc + sc if P(xc + sc; �c) < P(xc; �c)

xc otherwise.

� Define

r =
aredc

predc

and update the radius�c based on the predictive properties of the
model:

– Reduce�c if r is small (typically < 10�5);

– Increase�c if r is large (close to1);

– Otherwise do not change�c

MDOB, NASA Langley Research Center
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Details of computing the trial step
� To inherit the convergence properties from the MAESTRO class, the

substepss1 and s2 computed in AMF have to satisfy:

– A sufficient decrease condition:Each sk is required to predict at least
a fraction of the improvement in modelk that is predicted by steepest
descent step in the region of interest.

– A boundedness condition:Each substepsk, k = 1; : : : ;M is required
to satisfy

k sk k � Kk hk(yk�1) k

for some constantK independent of the iterates.

Both are easily satisfied. The following procedure will suffice. (vj and pj used
as local variables in both procedures.)

MDOB, NASA Langley Research Center
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One choice of trial step—constraints (objective analogous)

Given z0 = xc;�c > 0, sety0 = z0, �0 < �c, v0 = 0.
For j = 0; 1; : : :, while remaining within �c do f

Construct qhj (yj + p) �
 ahc (yj) +rahc (yj)

T p
2;

Find an approximate solutionpj to

minimize qhj (yj + p)

subject to k p k � �j

k yj + p k � �c

that satisfies FCD for

 ahc
2 from yj .

Computer =
 ahc (yj)
2 �  ahc (yj + pj)
2

k ahc (yj) k
2
� qhj (yj + pj)

.

Evaluatepj and updateyj and �j ;
Setvj+1 = vj + (yj+1 � yj).

g

Sets1 = vj .

MDOB, NASA Langley Research Center



7th AIAA/USAF/NASA/ISSMO Symposium on MA&O, St.Louis, September 2–4, 1998 11

Properties of the trial steps
� This choice of subproblems for computings1 and s2 results in

unconstrained trust-region subproblems.

� By results of the unconstrained AMF, the substeps satisfy the sufficient
decrease conditions.

� Note: in the subproblems, a more stringent rule for updatingyj is
required than for updating xc.

MDOB, NASA Langley Research Center
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Multilevel AMF
� Bilevel AMF—easily extended to multilevel case. Leth(x) be partitioned

into M blocks,h1(x); : : : ; hM (x).

� Let ah1 ; : : : ; a
h

M denote the lower-fidelity models ofh1(x); : : : ; hM (x),
respectively.

� Given xc 2 <
n, �k > 0; k = 1; : : : ;M + 1, �k > 0; k = 1; : : : ;M , the

multilevel AMF can be stated as follows:

– Apply the management procedure to consecutive reduced constraint
blocks.

– Apply the management procedure to the model of the objective
function.

� See paper for details.

MDOB, NASA Langley Research Center
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Convergence properties
� Theoretical:

– MAESTRO assumptions: conventional (smoothness and
boundedness, full rank for the gradients of constraints and their
models), sufficient decrease and boundedness for the substeps.

– AMF assumptions: consistency conditions and uniform boundedness
of the Hessian approximations.

– Result: first-order convergence to a critical point of the high-fidelity
problem.

� Practical:

– Enforce compatibility conditions

– Actual performance will depend on the predictive properties of the
model.

MDOB, NASA Langley Research Center
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Some computational considerations
� Consistency conditions:

– Enforced only at “major” iterates.

– Can be relaxed, but are easily enforced (Chang et al. ’93):

Given fhi(x)and flo(x), define�(x) � fhi(x)

flo(x)

.

Given xc, build �c(x) = �(xc) +r�(xc)
T (x� xc).

Then ac(x) = �c(x)flo(x)satisfies the consistency conditions.

� Inequality constraints:

– Squared slacks.

– An active set strategy (Alexandrov and El-Alem, ’98).

MDOB, NASA Langley Research Center
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Preliminary numerical results
� The algorithm has undergone initial testing on several simple problems

(Hock and Schittkowski and the MDO Test Suite).

� The problems were initially solved with

– NPSOL (Gill et al.)—SQP with line searches;

– A research implementation of MAESTRO without approximation
management;

– A research implementation of the MAESTRO-based AMF approach.
“High-fidelity” models—function evaluations computed to machine
precision. “Lower-fidelity” models—evaluations with abbreviated
precision and added noise (approx., two to four digits of accuracy
after the decimal point). The total number of function evaluations
and the number of “higher-fidelity” evaluations is reported.

MDOB, NASA Langley Research Center



Number of Function Evaluations
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Current Demonstration Problem: Aerodynamic Wing Design (with C. Gumbert)

• Euler, 3-D
• Current design variables:
  tip cord and tip trailing setback
• Objective: L/D
• General nonlinear constraints on
       CLS (lift coefficient times wing area),

       CM (pitching moment coefficient),

       Cl (rolling moment),

       Cp (pressure coefficient)

Variable-fidelity models are 
provided by analysis on a 
variety of grids:
              49 x 13 x   9
              97 x 25 x 17
            161 x 41 x 25
            193 x 49 x 33

CPU time per function evaluation is 
linear in the number of grid points:
order of magnitude increase in execution
time between adjacent models 
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Status of the 1-st order AMF development
� Introduced a globally convergent MAESTRO-based AMF for

constrained optimization;

� Empirical verification:

– Demonstrated on “toy” problems.

– Demonstration on increasingly realistic single discipline problems in
progress.

– Definition of a multidisciplinary demonstration problem in progress.

� Other work includes research on modeling and algorithmic alternatives.

� The results give reason for cautious optimism. Considerable amount of
experimentation with physics-based models will be required.

� The verdict should be out by the next MA&O Symposium

MDOB, NASA Langley Research Center
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